M1.(a) 2.9\%

Allow 3\%

(b) $\frac{1}{3.5 \times 10^{3}}$ seen $\sqrt{ }$
0.29 mm or $2.9 \times 10^{-4} \mathrm{~m} \checkmark$ must see 2 sf only
(c) $\pm 0.01 \mathrm{~mm} \checkmark$
(d) Clear indication that at least 10 spaces have been measured to give a spacing $=5.24 \mathrm{~mm} \checkmark$
spacing from at least 10 spaces
Allow answer within range ± 0.05
(e) Substitution in $d \sin \theta=n \lambda \checkmark$

The 25 spaces could appear here as n with $\sin \theta$ as 0.135 / 2.5

$$
\begin{aligned}
& d=0.300 \times 10^{-3} \mathrm{~m} \text { so } \\
& \text { number of lines }=3.34 \times 10^{3} \checkmark \\
& \quad \text { Condone error in powers of } 10 \text { in substitution } \\
& \quad \text { Allow ecf from } 1-4 \text { value of spacing }
\end{aligned}
$$

(f) Calculates \% difference (4.6\%) \checkmark
and makes judgement concerning agreement \checkmark
Allow ecf from 1-5 value
(g) care not to look directly into the laser beam \checkmark OR care to avoid possibility of reflected laser beam OR warning signs that laser is in use outside the laboratory \checkmark ANY ONE

M2.(a) Straight line of best fit passing through all error bars \checkmark

(b) $h_{0}=165 \pm 2 \mathrm{~mm} \checkmark$
(c) Clear attempt to determine gradient \checkmark

Correct readoffs (within $1 / 2$ square) for points on line more than 6 cm apart and Page 3
correct substitution into gradient equation \checkmark
$h_{d} k$ gradient $=(-) 0.862 \mathrm{~mm} \mathrm{~K}^{-1}$ and negative sign quoted \downarrow

Condone negative sign
Accept range -0.95 to -0.85
(d) $k=\frac{\frac{\text { candidate value for } h_{0} k}{\text { candidate value for } h_{0}}}{\text { (d) }}$
$=5.2 \times 10^{-3}$
Allow ecf from candidate values
K^{-1}
Accept range 0.0055 to 0.0049
(e) for $h=8000 \mathrm{~mm}, d^{-1}=\frac{8000}{14.5} \checkmark$
$d=1.8 \times 10^{-3} \mathrm{~mm} \checkmark$
(f) Little confidence in this answer because One of
It is too far to take extrapolation
OR
This is a very small diameter \checkmark
(b) $\mathrm{kg} \mathrm{m}^{-1} \mathrm{~s}^{-2} \checkmark$
(c) Direction of movement of particles in transverse wave perpendicular to energy propagation direction \checkmark

Parallel for longitudinal \checkmark
(d) $\quad \rho_{1} \mathrm{C}_{1}=\rho_{2} \mathrm{C}_{2} \downarrow$
$E=\rho c^{2}$ or $\rho c=\frac{E}{c}$ seen
$\left[\frac{E_{1}}{c_{1}}=\frac{E_{2}}{c_{2}}\right]$
(e) $\quad \frac{\rho_{x}}{\left[\rho_{y}\right.}=\frac{c_{y}}{c_{x}}$ and $\left.c_{x}=2 c_{y}\right]$
$0.5 \checkmark$
(f) speed of the wave in seawater is less than speed of the wave in glass \checkmark
argument to show that water $n_{\text {glass }}$
so tir could be observed when wave moves from water to glass

M4.(a) \quad Peak power $=107 / 108 \mathrm{~mW}$ and load resistance $=290 / 310 \Omega \checkmark$

Use of power $=I^{2} R$ with candidate values \checkmark
$0.0186-0.0193 \mathrm{~A}$
(b) Area of cell $=36 \times 10^{-4} \mathrm{~m}^{2}$ and solar power arriving $=730 \times($ an area $) \checkmark$
$\frac{0.108}{2.63} \operatorname{seen} \sqrt{ }$
0.041 (correct answer only; lose if ratio given unit)
(c) energy of one photon $=\frac{h c}{\lambda}=4.0 \times 10^{-19} \mathrm{~J} J$

Number of photons $=\frac{730 \times 36 \times 10^{-4}}{4.0 \times 10^{-19}}=6.6 \times 10^{18} \mathrm{~S}^{-1} \checkmark$
(d) Two from

Intensity of the sun at the Earth's surface
Average position of the sun
Efficiency of the panel
Power output of 1 panel

Weather conditions at the installation= $\checkmark \checkmark$

> Allow other valid physics answers=

M5.C

M6.D

M7.D

